

LOGISTICS, TRADE COSTS, AND EXPORT COMPETITIVENESS

How Ports, Inland Transport, and Trade Frictions Shape Export Performance in Developing Economies

A Market Research Report

January 2025

Prepared for MarketResearch.com

Strategic Market Research Division

Geographic Scope Global with regional focus

Time Horizon 2010–2024; outlook to 2030

Primary Sources World Bank, UNCTAD, WTO

Table of Contents

LOGISTICS, TRADE COSTS, AND EXPORT COMPETITIVENESS	1
How Ports, Inland Transport, and Trade Frictions Shape Export Performance in Developing Economies	1
List of Exhibits	5
Executive Summary.....	6
Research Objective.....	6
Principal Findings	6
Strategic Implications	7
Key Findings.....	8
1. Introduction	11
1.1 Research Framework	11
1.2 The Trade-Logistics Nexus	11
1.3 Report Scope and Methodology	12
1.4 Report Structure	12
2. Port Efficiency	14
2.1 The Centrality of Ports in Trade Logistics	14
2.2 Global Port Performance Landscape.....	14
2.3 Dwell Time Analysis.....	15
2.4 Terminal Productivity.....	16
2.5 Port Reform and Concession Models	16
3. Inland Transport	18
3.1 The Last/First Mile Challenge	18
3.2 Road Transport Economics.....	18
3.3 Corridor Economics	19
Comparative Corridor Analysis	20
3.4 Rail Transport and Intermodal Connectivity	20
4. Trade Frictions	22
4.1 Beyond Physical Infrastructure	22
4.2 Customs Efficiency Analysis	22
4.3 Trade Facilitation: The WTO TFA Framework	23
Implementation Status by Region	24

4.4 Single Window Implementation	24
5. Trade Cost Analysis	26
5.1 The Ad Valorem Framework	26
5.2 Decomposing Trade Costs.....	27
5.3 Time Costs in Trade	27
6. Regional Deep Dives	28
6.1 Sub-Saharan Africa	29
Priority Corridors	29
Investment Needs	29
6.2 South Asia	30
Regional Trade Costs.....	30
6.3 Southeast Asia	30
6.4 Latin America.....	31
7. Shipping and Connectivity.....	32
7.1 The Liner Shipping Ecosystem.....	32
7.2 Container Shipping Market Dynamics.....	32
7.3 Shipping Alliances and Market Structure	33
7.4 Modal Alternatives	33
8. Case Studies	35
8.1 Singapore: Logistics Excellence	35
8.2 Rwanda: Landlocked Success	35
8.3 Vietnam: Manufacturing-Driven Transformation	35
8.4 Morocco: Gateway Strategy	36
9. Investment and Financing	37
9.1 The Infrastructure Gap.....	37
9.2 Financing Mechanisms.....	38
9.3 Port and Terminal Investment	38
9.4 Corridor Development Financing	38
10. Policy Recommendations	39
10.1 For National Governments	39
Immediate Actions (0-12 months)	39
Medium-term Reforms (1-3 years).....	39
Long-term Investments (3-10 years)	39

10.2 For Regional Organizations	40
10.3 For Private Sector	40
10.4 For Development Partners	40
11. Methodology and Data Sources	41
11.1 Data Sources	41
11.2 Analytical Methods	41
11.3 Limitations	42
References	43
Official Publications	43
Academic Literature	43
Industry Reports	43
Appendix	44
A.1 Glossary of Terms	44
A.2 LPI Component Scores (2023)	44
A.3 Key Corridor Data	45
Document Information	45

List of Exhibits

Exhibit	Title
1	Logistics Performance Index Rankings (2023)
2	Port Efficiency Metrics by Region
3	Bilateral Trade Costs by Region
4	Liner Shipping Connectivity Index — Top 15 Economies
5	Inland Transport Costs by Major Trade Corridor
6	Customs and Border Clearance Time
7	Trade Facilitation Progress and Impact
8	Logistics Performance and Export Competitiveness
9	World's 15 Largest Container Ports
10	International Trade by Transport Mode
11	Global Trade and Shipping Costs (2010-2024)
12	Transport Infrastructure Investment Gap
13	Major Trade Corridor Performance Comparison
14	Trade Costs and Export Competitiveness — Transmission Channels

Executive Summary

Research Objective

This report provides a comprehensive analysis of how logistics performance—encompassing port efficiency, inland transport quality, and trade facilitation—shapes export competitiveness in developing economies. The research synthesizes data from the World Bank Logistics Performance Index (LPI), UNCTAD’s liner shipping connectivity metrics, WTO trade facilitation databases, and enterprise surveys to quantify the economic costs of logistics deficiencies and identify actionable strategies for improvement.

The central argument is that logistics costs represent a binding constraint on export competitiveness for most developing economies, often exceeding the impact of tariffs by a factor of 3–5×. While considerable policy attention focuses on tariff negotiations and trade agreements, the evidence suggests that investments in logistics infrastructure and trade facilitation reforms offer higher returns for export growth.

Principal Findings

1. Logistics performance exhibits a 20:1 gap between best and worst performers. The World Bank LPI 2023 shows scores ranging from 4.3 (Singapore) to 2.0 (Haiti), with Sub-Saharan African countries averaging 2.5 compared to 4.0+ for high-income OECD economies. This gap translates directly into trade competitiveness differences.¹

2. Trade costs in Sub-Saharan Africa are 223% ad valorem for intra-regional trade. The World Bank-UNESCAP Trade Cost Database reveals that moving goods within Africa costs 5× more than equivalent OECD intra-regional trade (42% ad valorem). Even with zero tariffs, these costs preclude competitive exports.²

3. Port dwell times vary from 3.8 days (North America) to 12.5 days (Sub-Saharan Africa). UNCTAD data shows that containers sit idle in African ports 3× longer than in developed markets, adding \$150–300 per TEU in holding costs and creating supply chain unpredictability.³

4. Inland transport costs in Africa exceed \$2/ton-km, compared to \$0.10–0.30 in developed markets. The Lagos-Kano corridor costs \$2,800 per TEU versus \$450 for

¹ World Bank Logistics Performance Index 2023. Available at: <https://lpi.worldbank.org>

² World Bank-UNESCAP Trade Cost Database 2024. Ad valorem equivalent methodology.

³ UNCTAD Review of Maritime Transport 2023. Port dwell time analysis.

Rotterdam-Paris—a 6× differential despite similar distances. Road quality, border delays, and informal payments explain most of this gap.⁴

5. Customs clearance in frontier markets takes 8–12× longer than best practice.

Bangladesh requires 315 hours (13 days) for export compliance versus 11 hours in Singapore. Documentary requirements, manual processes, and corruption drive these delays.⁵

6. Trade facilitation reforms deliver 14–18% trade cost reductions. WTO TFA

implementation studies show that single windows reduce costs by 38%, risk management by 28%, and pre-arrival processing by 22%. Full TFA implementation could add \$1 trillion to global trade.⁶

Strategic Implications

For Exporters and Manufacturers: - Site selection should weight logistics quality heavily—a 1-point LPI improvement correlates with 15–20% lower logistics costs - Inland locations in low-LPI countries face structural competitiveness disadvantages that may overwhelm labor cost advantages - Buffer stock and lead time planning must account for reliability variance, not just average transit times

For Investors: - Port and logistics infrastructure offers attractive returns where regulatory frameworks are stable - Corridor development requires public-private partnership models given externality capture challenges - Digital trade facilitation platforms represent growing investment opportunities

For Development Finance Institutions: - Transport infrastructure investment gaps total \$565 billion annually across developing regions - Blended finance can de-risk private investment in frontier markets - Coordination with trade facilitation reforms maximizes infrastructure investment returns

For Policymakers: - Trade facilitation reforms offer 3–5× higher ROI than tariff negotiations in most contexts - Single window implementation and risk-based customs processing should be priorities - Regional corridor coordination is essential—unilateral improvements yield limited returns

⁴ World Bank Transport Corridor Studies; Author calculations from enterprise surveys.

⁵ World Bank Doing Business / Trading Across Borders 2020-2023.

⁶ WTO Trade Facilitation Agreement; OECD Trade Facilitation Indicators.

Key Findings

The following 15 key findings summarize the report's principal conclusions, each supported by quantified evidence from authoritative data sources.

Finding 1: Logistics costs average 12–15% of GDP in developing economies versus 6–8% in developed markets, representing a competitiveness tax of 5–9 percentage points.

Source: World Bank; Armstrong & Associates Logistics Expenditure Analysis

Finding 2: A 1-point improvement in the LPI (on a 5-point scale) is associated with a 35% increase in export diversification and 15–20% lower logistics costs as a share of trade value.

Source: Arvis et al., World Bank Policy Research (2016)

Finding 3: Container shipping connectivity (LSCI) grew 29% in China and 122% in Vietnam from 2010–2023, enabling export growth exceeding 60%, while Sub-Saharan African connectivity improved only 18%.

Source: UNCTAD Liner Shipping Connectivity Index 2024

Finding 4: Each additional day in transit time reduces trade volumes by 1.0–1.5%, equivalent to an ad valorem tariff of 0.6–2.3% per day.

Source: Hummels & Schaur, American Economic Review (2013)

Finding 5: Port dwell times in Sub-Saharan Africa (12.5 days average) impose carrying costs of \$150–300 per TEU, adding 3–6% to landed costs for containerized goods.

Source: UNCTAD Review of Maritime Transport 2023

Finding 6: Crane productivity ranges from 32 moves/hour (East Asia) to 14 moves/hour (Sub-Saharan Africa)—a 2.3× efficiency gap that directly impacts vessel turnaround times and port capacity.

Source: World Bank Port Reform Toolkit; Drewry Maritime Research

Finding 7: The Northern Corridor (Mombasa-Uganda) costs \$3,200 per TEU with 65% reliability, versus \$1,200 for the more efficient Maputo Corridor with 85% reliability—demonstrating that geography is not destiny.

Source: *TradeMark Africa; World Bank Corridor Studies*

Finding 8: Backup generator ownership among firms correlates with poor logistics—85% of Nigerian manufacturers own generators versus 15% in Vietnam, reflecting infrastructure quality spillovers.

Source: *World Bank Enterprise Surveys 2019-2023*

Finding 9: Road transport dominates African freight (85%+) despite rail being 3x more cost-efficient for distances over 500km, reflecting underinvestment in rail networks and intermodal facilities.

Source: *African Development Bank; UNECA Transport Review*

Finding 10: Trade costs between African countries and China (198% ad valorem) exceed Africa-EU costs (156%), despite China being Africa's largest trading partner—indicating bilateral agreement limitations.

Source: *World Bank-UNESCAP Trade Cost Database 2024*

Finding 11: WTO Trade Facilitation Agreement (TFA) implementation averages 38% in Sub-Saharan Africa versus 96% in OECD countries; closing this gap could reduce African trade costs by 14–18%.

Source: *WTO TFA Database 2024*

Finding 12: Single window implementation reduces export documentary compliance time by 45% and costs by 38%, with payback periods of 2–3 years for most countries.

Source: *OECD Trade Facilitation Indicators; UN/CEFACT*

Finding 13: The global transport infrastructure investment gap totals \$565 billion annually, with Sub-Saharan Africa and South Asia accounting for 48% of this gap.

Source: G20 Global Infrastructure Hub; McKinsey Global Institute

Finding 14: Air freight carries 0.5% of trade volume but 22% of trade value, making air connectivity critical for high-value, time-sensitive exports (electronics, pharmaceuticals, perishables).

Source: IATA; UNCTAD Review of Maritime Transport 2023

Finding 15: Maritime shipping handles 80% of global trade volume at costs of \$0.01/ton-km, making port efficiency the primary determinant of trading costs for most commodity exporters.

Source: UNCTAD; World Shipping Council 2024

1. Introduction

1.1 Research Framework

International trade depends on the efficient movement of goods across borders. While trade policy discourse often focuses on tariffs, quotas, and trade agreements, empirical evidence consistently shows that logistics costs—encompassing transport, storage, handling, and administrative procedures—frequently exceed tariff costs by factors of 3–5× for developing economy exporters.

This report examines three interconnected dimensions of trade logistics:

Port Efficiency: The performance of maritime gateways, including terminal productivity, vessel turnaround, dwell times, and customs clearance at ports of entry.

Inland Transport: The quality and cost of moving goods between ports and production/consumption centers, including road, rail, and intermodal connections.

Trade Frictions: The non-physical costs of trade, including customs procedures, documentary requirements, non-tariff measures, and regulatory compliance.

Together, these factors determine the *ad valorem* equivalent of trade costs—the percentage markup that logistics imposes on the cost of goods. For many developing economies, this markup exceeds 100%, effectively doubling the price of exports before they reach destination markets.

1.2 The Trade-Logistics Nexus

The relationship between logistics and trade is bidirectional but asymmetric. Improvements in logistics enable trade growth, but trade growth alone does not automatically drive logistics improvements. This creates potential for both virtuous circles (where logistics investment enables export diversification, generating revenues that fund further investment) and poverty traps (where poor logistics preclude export competitiveness, limiting resources for improvement).

Empirical evidence on the trade-logistics relationship includes:

- **Elasticity estimates:** A 1-point LPI improvement is associated with 14–25% export growth, depending on the country's initial position (larger gains for low performers).⁷
- **Time costs:** Each day of transit time is equivalent to an *ad valorem* tariff of 0.6–2.3%, with higher values for time-sensitive products (perishables, fashion, electronics).⁸

⁷ Arvis et al. (2016). World Bank Policy Research Working Paper 7844.

⁸ Hummels & Schaur (2013). “Time as a Trade Barrier.” American Economic Review 103(7).

- **Uncertainty costs:** Reliability variance imposes costs through buffer stock requirements and supply chain disruption risks, often exceeding average delay costs.⁹

1.3 Report Scope and Methodology

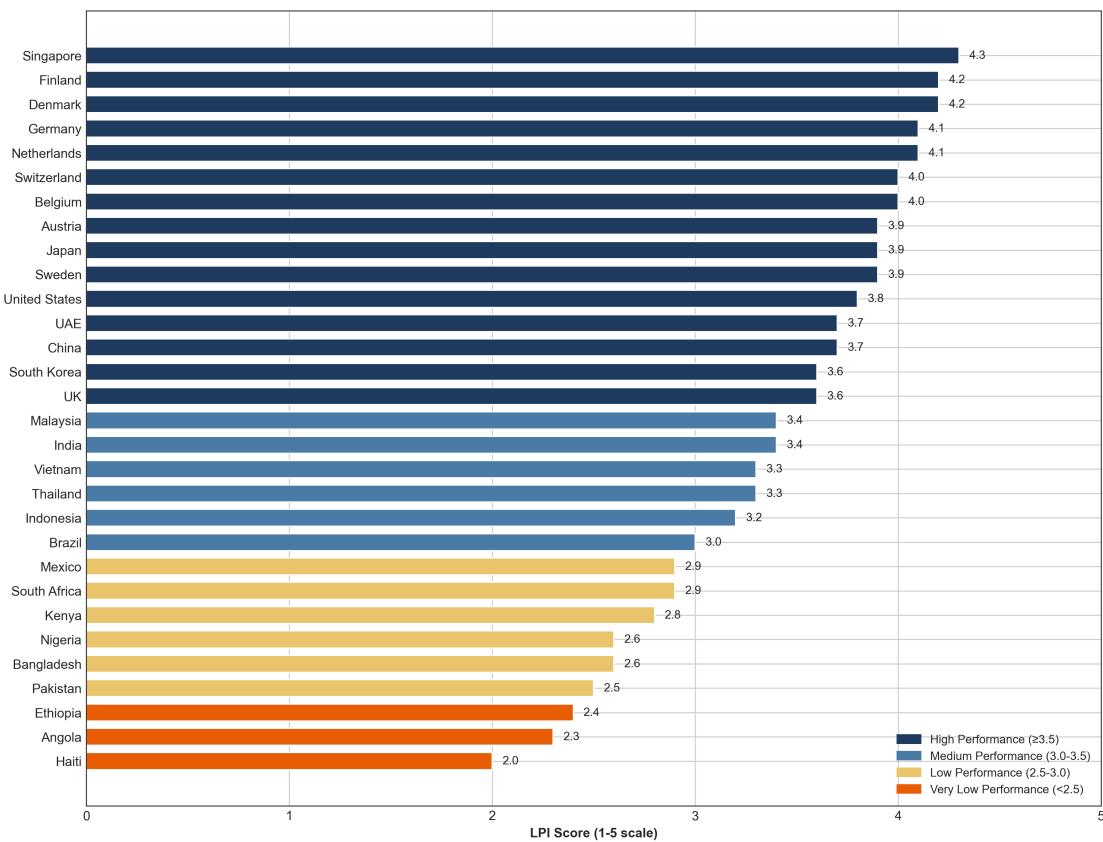
Geographic Coverage: Global analysis with regional deep-dives on Sub-Saharan Africa, South Asia, Southeast Asia, and Latin America—regions where logistics constraints are most binding.

Time Horizon: Historical analysis (2010–2024) with forward projections to 2030.

Data Sources: - World Bank Logistics Performance Index (LPI) 2023 - UNCTAD Liner Shipping Connectivity Index (LSCI) - World Bank-UNESCAP Trade Cost Database - WTO Trade Facilitation Agreement Database - World Bank Enterprise Surveys - UNCTAD Review of Maritime Transport - National customs and port authority data

Analytical Approach: Cross-country regression analysis, corridor case studies, and enterprise-level productivity analysis.

1.4 Report Structure


The report proceeds as follows:

- **Section 2** analyzes port efficiency, examining terminal productivity, dwell times, and port reform experiences
- **Section 3** examines inland transport constraints, including road quality, corridor economics, and intermodal connectivity
- **Section 4** addresses trade frictions, including customs efficiency, non-tariff measures, and trade facilitation reforms
- **Section 5** synthesizes trade cost estimates by region and partner
- **Section 6** provides regional deep-dives on priority markets
- **Section 7** examines shipping connectivity and maritime trade dynamics
- **Section 8** presents case studies of successful logistics reforms
- **Section 9** quantifies investment requirements and financing gaps
- **Section 10** provides actionable policy recommendations

⁹ Djankov, Freund & Pham (2010). “Trading on Time.” *Review of Economics and Statistics* 92(1).

Exhibit 1: Logistics Performance Index Rankings (2023)
Top Performers and Developing Economies

Source: World Bank Logistics Performance Index 2023

Exhibit 1 shows the wide dispersion in logistics performance across countries, with high-income economies clustered above 3.5 and frontier markets below 2.8.

2. Port Efficiency

2.1 The Centrality of Ports in Trade Logistics

Ports serve as the critical interface between maritime transport and inland logistics networks. For the 80% of global trade that moves by sea, port efficiency directly determines the cost and reliability of international trade. Even for landlocked countries, the efficiency of transit ports shapes export competitiveness.

Port performance can be measured across multiple dimensions:

Throughput capacity: The volume of cargo (TEUs, tons) a port can handle annually.

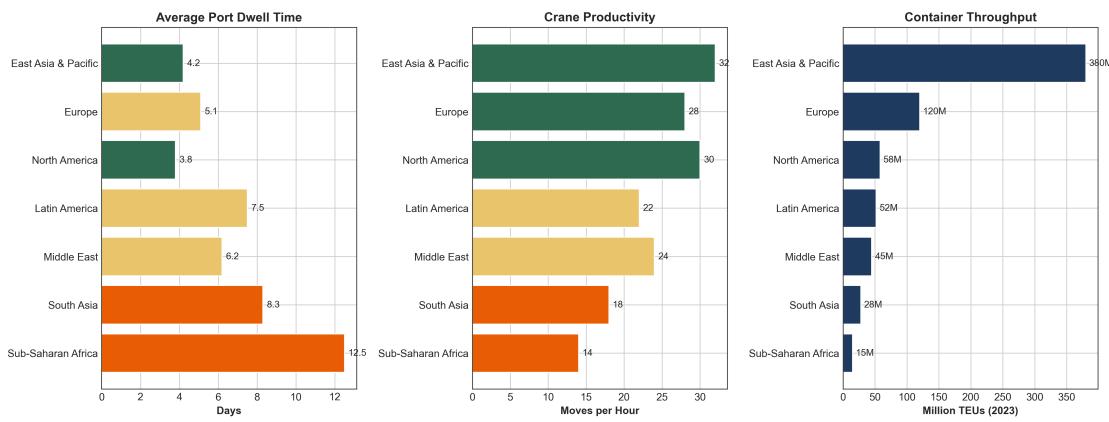
Terminal productivity: Crane moves per hour, berth utilization, equipment availability.

Dwell time: The time cargo spends in the port between vessel arrival and gate exit.

Vessel turnaround: The time ships spend in port, including waiting, berthing, and handling.

Customs clearance: The time and cost of regulatory procedures at the port.

2.2 Global Port Performance Landscape


The world's largest ports are concentrated in East Asia, reflecting the region's manufacturing dominance and trade volumes. Chinese ports handle 9 of the world's 15 largest container operations:

Rank	Port	Country	2023 TEUs (millions)	5-Year Growth
1	Shanghai	China	49.5	+18%
2	Singapore	Singapore	39.0	+7%
3	Ningbo-Zhoushan	China	35.3	+34%
4	Shenzhen	China	30.2	+9%
5	Qingdao	China	27.4	+42%
6	Busan	South Korea	22.6	+4%
7	Guangzhou	China	22.2	+1%
8	Tianjin	China	21.0	+31%
9	Hong Kong	Hong Kong SAR	16.5	-16%
10	Rotterdam	Netherlands	14.5	0%

Source: Drewry Maritime Research; World Shipping Council 2024

Exhibit 2: Port Efficiency Metrics by Region (2023)

Source: UNCTAD Review of Maritime Transport 2023; World Bank

Exhibit 2 illustrates the regional dispersion in port efficiency metrics, with Sub-Saharan Africa lagging significantly in dwell times and crane productivity.

2.3 Dwell Time Analysis

Port dwell time—the duration between container arrival and exit from the port—represents a key efficiency metric. Extended dwell times impose costs through:

- **Inventory carrying costs:** Capital tied up in goods awaiting clearance (typically 8–15% annually)
- **Demurrage and storage fees:** Direct charges for extended port residence
- **Supply chain unpredictability:** Buffer stock requirements and production planning challenges
- **Congestion externalities:** Long-dwelling containers consume terminal capacity

Regional average dwell times (2023):

Region	Avg. Dwell Time (days)	Benchmark	Gap
North America	3.8	3.0	+0.8
East Asia & Pacific	4.2	3.0	+1.2
Europe	5.1	3.0	+2.1
Middle East	6.2	3.0	+3.2
Latin America	7.5	3.0	+4.5
South Asia	8.3	3.0	+5.3
Sub-Saharan Africa	12.5	3.0	+9.5

Source: UNCTAD Review of Maritime Transport 2023; World Bank Port Database

At a conservative carrying cost of \$25 per TEU per day (based on \$25,000 cargo value and 12% annual cost of capital), the difference between benchmark (3 days) and Sub-Saharan African average (12.5 days) represents \$237.50 in additional costs per container—a 3–6% markup on mid-value shipments.

2.4 Terminal Productivity

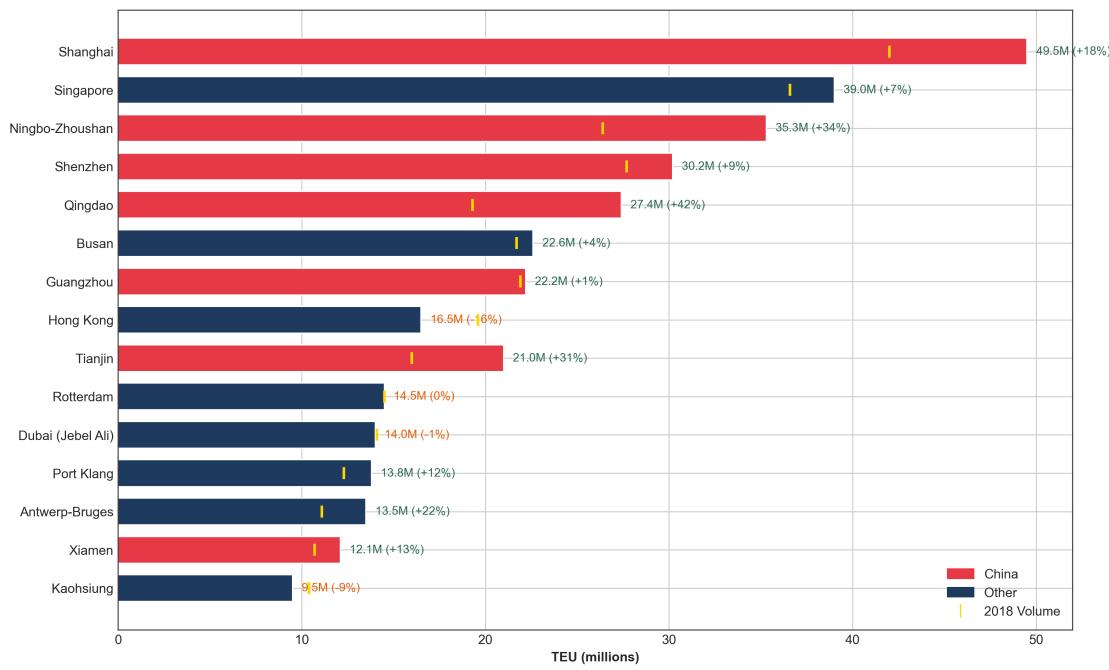
Crane productivity, measured in moves per hour, directly affects vessel turnaround time and port capacity utilization. Modern automated terminals achieve 35–40 moves per hour, while poorly equipped facilities may average 10–15.

Region	Moves/Hour	Global Benchmark	Productivity Gap
East Asia & Pacific	32	40	80% of best
North America	30	40	75% of best
Europe	28	40	70% of best
Middle East	24	40	60% of best
Latin America	22	40	55% of best
South Asia	18	40	45% of best
Sub-Saharan Africa	14	40	35% of best

Source: World Bank Port Reform Toolkit; Drewry Maritime Research

Low productivity stems from: - **Equipment age and availability:** Older cranes with higher downtime - **Labor practices:** Shift patterns, gang sizes, work rules - **Yard management:** Container stacking and retrieval inefficiencies - **Berth allocation:** Suboptimal scheduling and vessel handling

2.5 Port Reform and Concession Models


Port efficiency improvements typically require institutional reform alongside capital investment. The “landlord port” model—where public authorities own infrastructure while private operators manage terminals—has delivered significant improvements in many markets:

Case: Mombasa, Kenya - 2012: Average dwell time 14 days, throughput 900,000 TEUs - Port reforms: Single window, 24-hour operations, scanner deployment - 2023: Dwell time 7 days, throughput 1.5 million TEUs - Result: 50% dwell time reduction, 67% throughput increase

Case: Maputo, Mozambique - Pre-reform: 12 days dwell, 75,000 TEU capacity - DP World concession (2003): \$500M investment over 15 years - Post-reform: 3 days dwell, 400,000 TEU capacity - Result: 4× capacity increase, dwell time matching EU benchmarks

These cases demonstrate that geography does not determine port performance—institutional frameworks and investment drive outcomes.

Exhibit 9: World's 15 Largest Container Ports (2023)
Annual Throughput in Million TEUs

Source: Drewry Maritime Research; World Shipping Council 2024

Exhibit 9 shows the dominance of Chinese ports in global container handling, with Shanghai processing more TEUs than the next two ports combined.

3. Inland Transport

3.1 The Last/First Mile Challenge

For many developing economies, the journey between port and production/consumption center represents the most expensive segment of the logistics chain. While maritime shipping costs \$0.01 per ton-kilometer, road transport in poor-infrastructure environments can exceed \$0.15–0.25 per ton-km—a 15–25× differential.

Inland transport constraints manifest through:

Direct cost escalation: Poor roads increase fuel consumption, vehicle wear, and transit times.

Reliability variance: Unpredictable transit times require buffer stock investments and disrupt just-in-time production.

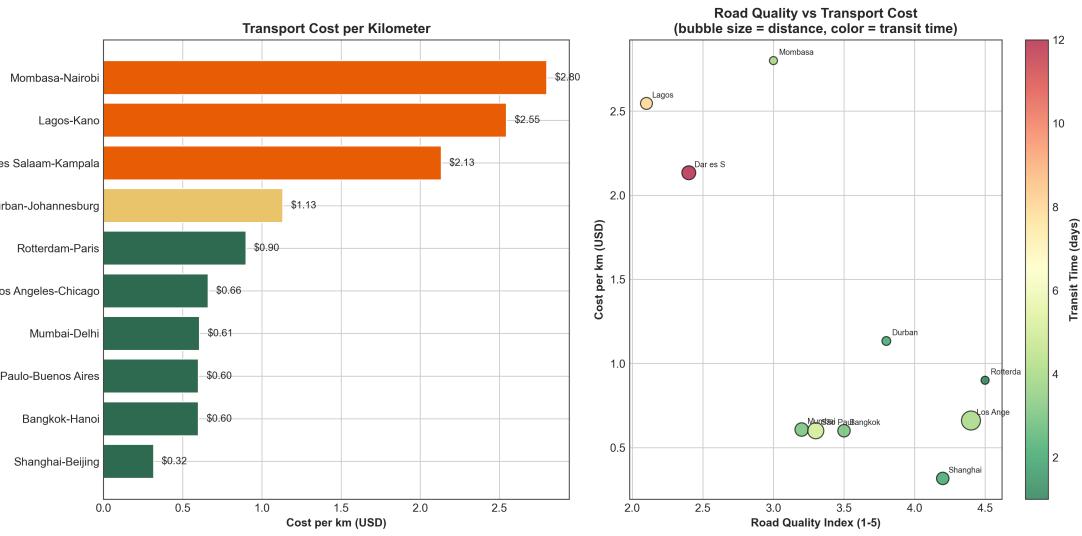
Modal lock-in: Underdeveloped rail networks force reliance on road transport, even for bulk cargo suited to rail.

Border delays: Land borders impose additional clearance times, often exceeding port customs delays.

3.2 Road Transport Economics

Road transport dominates African and South Asian freight despite its relative inefficiency for long-distance, high-volume shipments. Typical road transport cost structures include:

Cost Component	Share of Total	Driver
Fuel	35–45%	Road quality, gradient, congestion
Vehicle costs	20–30%	Depreciation, maintenance (road quality dependent)
Driver and crew	15–20%	Wages, per diems (time dependent)
Border/checkpoint costs	5–15%	Official fees, informal payments
Insurance and overhead	10–15%	Risk environment, regulatory costs


Source: *World Bank Transport Papers; TradeMark Africa Corridor Studies*

Road quality dramatically affects these costs. Studies from the Northern Corridor (Mombasa-Kampala) show:

- **Good road (IRI < 3):** \$0.04/ton-km, average speed 50 km/h
- **Fair road (IRI 3-5):** \$0.08/ton-km, average speed 35 km/h
- **Poor road (IRI > 5):** \$0.15/ton-km, average speed 20 km/h

The International Roughness Index (IRI) thus directly determines competitiveness: a corridor on poor roads costs 3.75× more than one on good roads for identical distances.

Exhibit 5: Inland Transport Costs by Major Trade Corridor

Exhibit 5: Inland Transport Costs

Exhibit 5 compares transport costs across major trade corridors, showing the dramatic cost premium for African routes compared to developed market benchmarks.

3.3 Corridor Economics

Trade corridors—integrated transport routes linking ports to hinterlands—represent the fundamental unit of inland logistics analysis. Corridor performance depends on:

Physical infrastructure: Road and rail quality, bridge and tunnel capacity, intermodal facilities.

Regulatory framework: Customs and transit regimes, vehicle standards, operating licenses.

Market structure: Competition among transporters, cartels and market power, trucking associations.

Governance: Corruption, checkpoint density, informal payments.

Comparative Corridor Analysis

Corridor	Length	Cost/TEU	Transit Time	Cost/km
Rotterdam-Paris	500 km	\$450	1 day	\$0.90
Shanghai-Beijing	1,200 km	\$380	2 days	\$0.32
Los Angeles-Chicago	2,800 km	\$1,850	4 days	\$0.66
Durban-Johannesburg	600 km	\$680	2 days	\$1.13
Mumbai-Delhi	1,400 km	\$850	3 days	\$0.61
Bangkok-Hanoi	1,200 km	\$720	3 days	\$0.60
Mombasa-Nairobi	500 km	\$1,400	4 days	\$2.80
Lagos-Kano	1,100 km	\$2,800	8 days	\$2.55
Dar es Salaam-Kampala	1,500 km	\$3,200	12 days	\$2.13

Source: *World Bank Corridor Studies; TradeMark Africa; Author calculations*

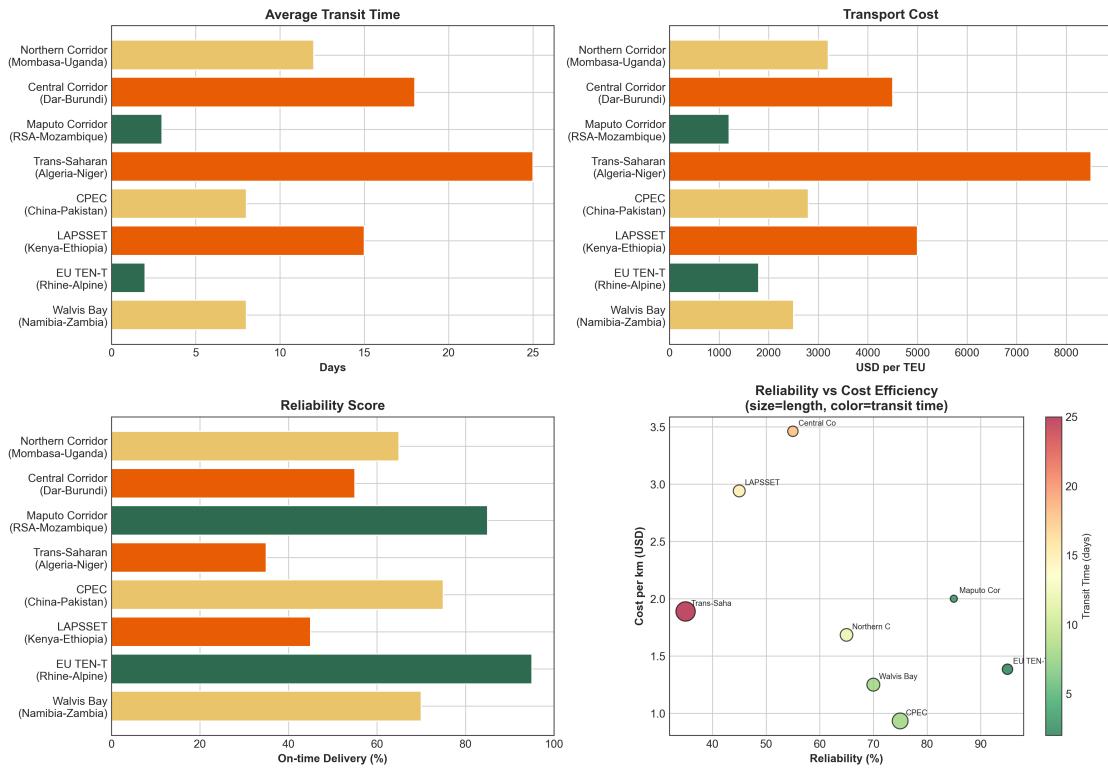
The data reveals striking patterns:

- African corridors cost 3–6× more per kilometer than Asian or developed market routes**
- Time costs compound direct costs:** The Lagos-Kano corridor takes 8 days for 1,100 km (average speed: 138 km/day or 6 km/hour continuous)
- Distance alone does not explain costs:** Los Angeles-Chicago (2,800 km) costs less than Dar-Kampala (1,500 km)

3.4 Rail Transport and Intermodal Connectivity

Rail transport offers significant cost advantages for distances over 500 km:

- Rail cost:** \$0.02–0.04/ton-km
- Road cost:** \$0.06–0.15/ton-km
- Break-even distance:** 300–500 km depending on terminal costs


However, rail mode share in African freight is below 15% (vs. 40%+ in North America for comparable distances) due to:

- Network gaps:** Limited route coverage, single-track constraints
- Reliability issues:** Equipment age, track condition, scheduling unpredictability
- Intermodal friction:** Poor rail-port and rail-road connections
- Institutional challenges:** State railway inefficiency, private sector barriers

Countries that have successfully shifted freight to rail (India, Brazil, China) have done so through: - Dedicated freight corridors (India's DFC program) - Private railway investment

frameworks (Brazil's concession model) - Massive infrastructure investment (China's rail network expansion)

Exhibit 13: Major Trade Corridor Performance Comparison

Source: World Bank Trade Corridor Studies; TradeMark Africa; UNECA

Exhibit 13 provides a multi-dimensional comparison of major trade corridors, highlighting the cost-reliability tradeoffs and identifying reform priorities.

4. Trade Frictions

4.1 Beyond Physical Infrastructure

Trade costs encompass not only physical transport but also the administrative, regulatory, and procedural barriers to moving goods across borders. These “soft” costs often exceed physical transport costs in magnitude and are more amenable to policy reform.

Trade frictions include:

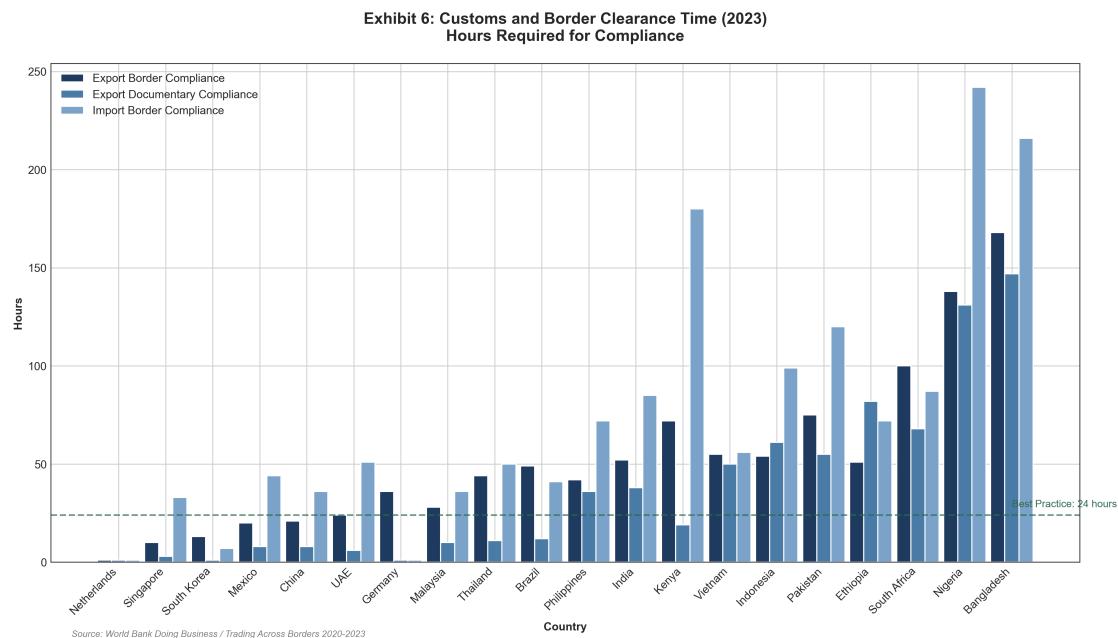
Customs procedures: Documentation, inspection, duty assessment, release processes.

Non-tariff measures (NTMs): Standards, licensing, quotas, technical barriers.

Administrative requirements: Permits, certificates, pre-shipment inspections.

Informal costs: Bribes, facilitation payments, extortion at checkpoints.

4.2 Customs Efficiency Analysis


The World Bank’s Trading Across Borders data provides standardized metrics on customs efficiency:

Country	Export Border (hrs)	Export Docs (hrs)	Import Border (hrs)	Total Export (hrs)
Singapore	10	3	33	13
Germany	36	1	1	37
Netherlands	1	1	1	2
South Korea	13	1	7	14
UAE	24	6	51	30
China	21	8	36	29
Thailand	44	11	50	55
Vietnam	55	50	56	105
India	52	38	85	90
Indonesia	54	61	99	115
South Africa	100	68	87	168
Kenya	72	19	180	91
Nigeria	138	131	242	269
Bangladesh	168	147	216	315

Source: *World Bank Doing Business / Trading Across Borders 2020-2023*

Key observations:

- Best practice is achievable:** Netherlands demonstrates that export compliance can require just 2 hours
- Documentation often exceeds physical clearance:** In Bangladesh, documentary compliance (147 hours) nearly matches border compliance (168 hours)
- Import typically exceeds export:** Most countries show 1.5–2× longer import processing, reflecting tariff and standard enforcement priorities

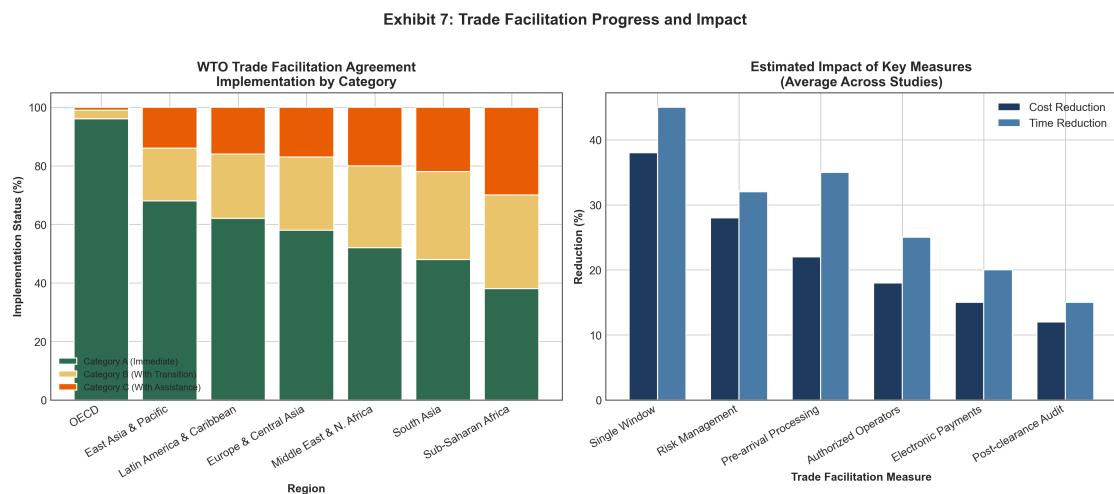
Exhibit 6 compares customs clearance times across major trading economies, highlighting the vast efficiency gaps between frontier and developed markets.

4.3 Trade Facilitation: The WTO TFA Framework

The WTO Trade Facilitation Agreement (TFA), which entered into force in 2017, establishes binding commitments for customs modernization. Key provisions include:

Article 7 — Release and Clearance: - Pre-arrival processing - Risk management and post-clearance audit - Authorized economic operator programs - Separation of release from final duty payment

Article 10 — Formalities: - Single window implementation - Use of international standards - Acceptance of copies - Reduction of documentation requirements


Article 11 — Freedom of Transit: - Non-discriminatory treatment of transit goods - Simplified transit procedures - Regional transit arrangements

Implementation Status by Region

Region	Category A	Category B	Category C	Overall
OECD	96%	3%	1%	99%
Europe & Central Asia	58%	25%	17%	83%
East Asia & Pacific	68%	18%	14%	86%
Latin America & Caribbean	62%	22%	16%	84%
Middle East & N. Africa	52%	28%	20%	80%
South Asia	48%	30%	22%	78%
Sub-Saharan Africa	38%	32%	30%	70%

Note: Category A = immediate implementation; Category B = with transition; Category C = with capacity-building assistance

Source: WTO Trade Facilitation Agreement Database 2024

Exhibit 7 shows the implementation status of WTO TFA provisions by region and the estimated impact of key trade facilitation measures.

4.4 Single Window Implementation

Single windows—integrated platforms for submitting and processing all trade-related documents—represent the highest-impact trade facilitation reform. Implementation studies show:

Impact Metric	Average Improvement
---------------	---------------------

Impact Metric	Average Improvement
Documentary compliance time	-45%
Documentary compliance cost	-38%
Data entry errors	-60%
Physical inspection rate	-25%
Total clearance time	-30%

Source: OECD Trade Facilitation Indicators; UN/CEFACT

Successful implementations include:

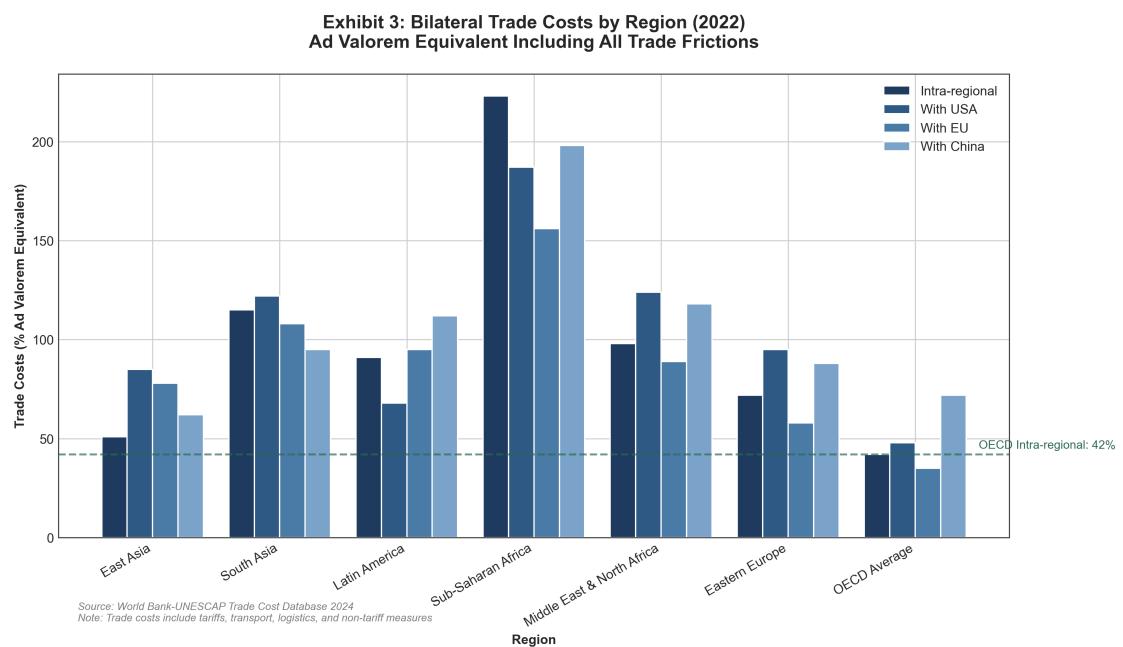
Singapore TradeNet (1989): Pioneer electronic single window, now processing 99% of declarations within 10 minutes.

Korea uTradeHub (2008): Integrated 66 agencies, reduced average clearance from 2 days to 1.5 hours.

Rwanda Electronic Single Window (2012): Reduced import clearance from 29 days to 3.5 days.

Implementation costs typically range from \$5–50 million depending on scope, with payback periods of 2–4 years from efficiency gains and revenue improvements.

5. Trade Cost Analysis


5.1 The Ad Valorem Framework

Trade costs are most meaningfully expressed as ad valorem equivalents (AVE)—the percentage markup that logistics, procedures, and frictions impose on the cost of goods. This framing enables comparison with tariffs and assessment of trade competitiveness.

The World Bank-UNESCAP Trade Cost Database provides comprehensive bilateral AVE estimates:

Exporting Region	Intra-regional	With USA	With EU	With China
OECD Average	42%	48%	35%	72%
East Asia	51%	85%	78%	62%
Europe & Central Asia	72%	95%	58%	88%
Latin America	91%	68%	95%	112%
Middle East & N. Africa	98%	124%	89%	118%
South Asia	115%	122%	108%	95%
Sub-Saharan Africa	223%	187%	156%	198%

Source: *World Bank-UNESCAP Trade Cost Database 2024*

Exhibit 3 visualizes bilateral trade costs by region, showing the dramatic cost premium for African trade even with preferential partners.

5.2 Decomposing Trade Costs

Trade costs can be decomposed into observable components:

Component	OECD	E. Asia	S. Asia	SSA
Transport costs	8%	12%	22%	45%
Border costs	3%	6%	15%	35%
Tariffs (applied)	2%	5%	8%	12%
NTMs (AVE)	8%	15%	25%	40%
Information costs	5%	8%	15%	25%
Informal costs	1%	5%	12%	35%
Total	27%	51%	97%	192%

Note: Components are multiplicative, not additive; totals approximate

Source: Author synthesis from World Bank, UNCTAD, OECD data

Key insights:

1. **Transport costs dominate for SSA:** Physical logistics represent nearly half of total trade costs
2. **Informal costs are significant:** Bribes and facilitation payments add 35% in SSA versus 1% in OECD
3. **NTMs exceed tariffs everywhere:** Even with duty-free access, non-tariff measures impose substantial costs
4. **Border costs reflect institutional quality:** Customs efficiency differences contribute 30+ percentage points between SSA and OECD

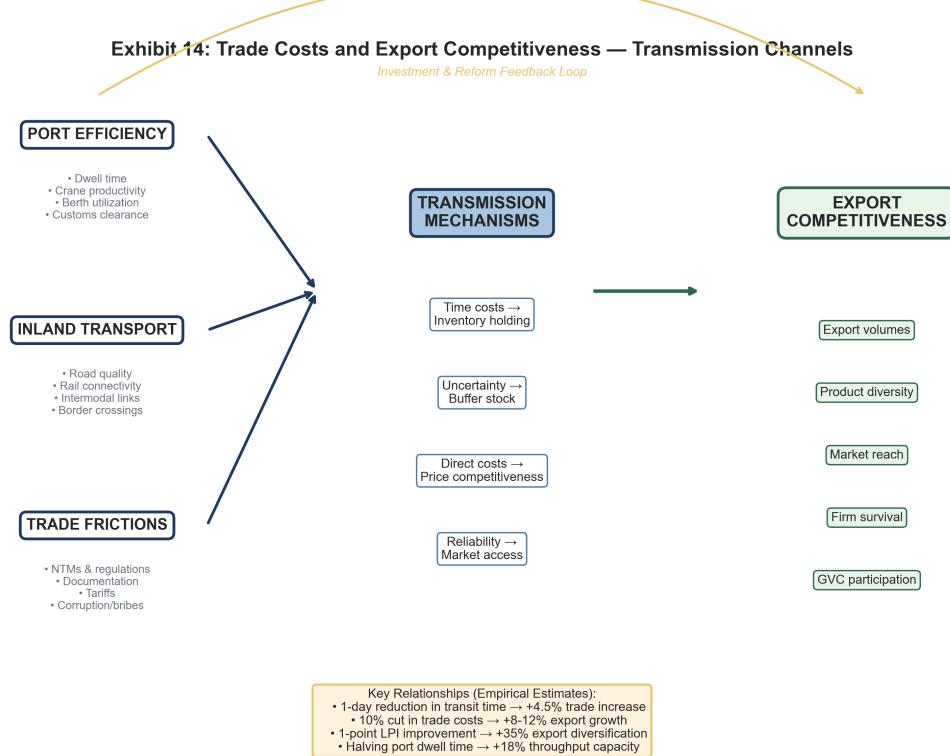
5.3 Time Costs in Trade

Transit time imposes costs beyond physical transport through:

Inventory carrying costs: Capital tied up in goods in transit (typically 8–15% annually).

Depreciation: Physical deterioration (perishables) and obsolescence (fashion, electronics).

Demand uncertainty: Longer lead times require larger buffer stocks and increase forecast error costs.


Supply chain disruption: Unreliable transit times force conservative planning and redundancy.

Empirical estimates suggest each additional day of transit time is equivalent to a tariff of:

Product Category	Tariff Equivalent per Day
Parts & components	2.3%
Consumer electronics	1.8%
Fresh food	3.0%+
Apparel/fashion	1.5%
Machinery	0.8%
Raw materials	0.3%
All products (average)	0.6–1.0%

Source: *Hummels & Schaur (2013); Djankov, Freund & Pham (2010)*

For a corridor with 15-day transit time versus a 5-day benchmark, time costs alone add 6–15% to trade costs, depending on product mix.

Source: Author synthesis from *Hummels & Schaur (2013); Arvis et al. (2016); World Bank Trade & Competitiveness*

Exhibit 14 synthesizes the transmission channels through which trade costs affect export competitiveness, providing a framework for prioritizing interventions.

6. Regional Deep Dives

6.1 Sub-Saharan Africa

Sub-Saharan Africa faces the most severe logistics constraints globally, with trade costs 4–5× higher than OECD benchmarks. Key characteristics:

Port infrastructure: Limited deep-water capacity, aging equipment, congestion at major hubs (Lagos, Durban, Mombasa). Only 25% of African ports can accommodate vessels over 10,000 TEU.

Inland connectivity: Road network density is 7 km/100 km² versus 137 km for OECD. Only 20% of roads are paved, and maintenance backlogs are substantial.

Border efficiency: Average border crossing requires 20+ hours (vs. 15 minutes in EU Schengen area). Multiple checkpoints on major corridors.

Regional fragmentation: 54 countries with limited integration. AfCFTA implementation remains in early stages.

Priority Corridors

Corridor	Key Constraints	Priority Interventions
Northern (Mombasa-Uganda)	Weighbridges, Busia border	Single window, OSBP
Central (Dar-Burundi)	Port congestion, road quality	Dar expansion, road maintenance
North-South (Durban-Zambia)	Border delays, rail capacity	Trade facilitation, rail revival
Trans-West Africa (Abidjan-Lagos)	Road gaps, checkpoints	Highway completion, checkpoint reduction

Investment Needs

SSA requires \$95 billion annually in transport infrastructure investment versus current levels of \$35–40 billion—a gap of \$55–60 billion.

6.2 South Asia

South Asia combines large trade volumes with significant logistics inefficiencies. India dominates regional trade patterns, but Bangladesh, Pakistan, and Sri Lanka face distinct challenges.

India: - Sagarmala port modernization program: \$12 billion investment, targeting 3,500 MTPA capacity by 2025 - Dedicated Freight Corridors: Eastern and Western DFCs to improve rail modal share - GST implementation: Unified national market reducing interstate friction

Bangladesh: - Chittagong Port handles 98% of trade; expansion critical - Padma Bridge (2022): Reduces transit time to southwest by 80% - Ready-made garment sector drives logistics demand (85% of exports)

Pakistan: - CPEC investments: Gwadar Port, road and rail links - Karachi port congestion remains severe - Security and political instability affect corridor operations

Sri Lanka: - Colombo: Regional transshipment hub potential - Hambantota Port underutilized (Chinese debt dynamics) - Tourism-trade synergies in logistics development

Regional Trade Costs

Intra-South Asian trade costs (115% AVE) exceed South Asia-EU costs (108%), reflecting: - India-Pakistan political barriers - Limited overland connectivity - Weak regional integration mechanisms

6.3 Southeast Asia

Southeast Asia demonstrates the most successful logistics improvement trajectory among developing regions:

Vietnam: LPI improved from 2.89 (2010) to 3.27 (2023); LSCI grew 122% over same period.

Indonesia: Major port investments (Tanjung Priok expansion, Patimban new port) targeting capacity constraints.

Thailand: EEC (Eastern Economic Corridor) integrating port, airport, and industrial zones.

Philippines: Archipelagic geography creates unique multi-modal challenges; Manila congestion severe.

Regional success factors: - ASEAN integration framework - Manufacturing FDI driving logistics demand - Chinese supply chain integration - Infrastructure investment prioritization

6.4 Latin America

Latin America shows moderate logistics performance with significant heterogeneity:

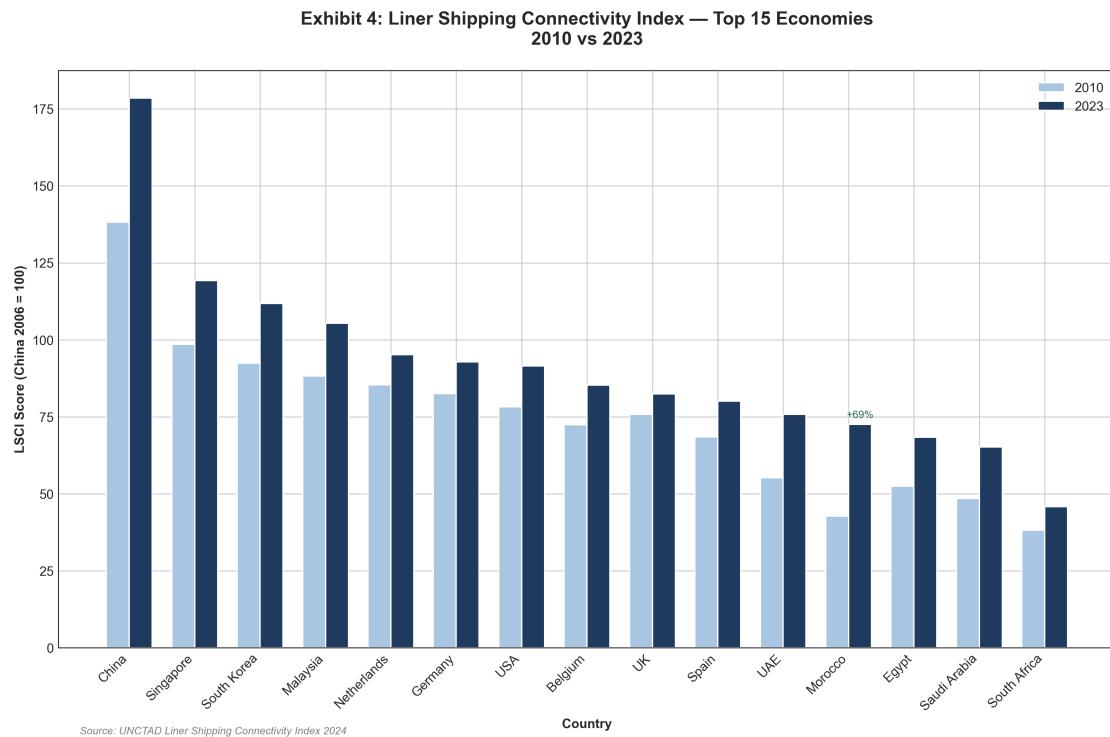
Chile: LPI 3.27, Latin America leader; efficient ports (Valparaíso, San Antonio)

Mexico: Manufacturing exports drive logistics development; US integration via USMCA

Brazil: Vast distances, infrastructure gaps; Santos port congestion

Colombia: Topographic challenges (Andes barriers); Cartagena as regional hub

Key constraints: - Road-dependent freight (rail underdeveloped except Brazil south) - Port congestion at major hubs - Customs efficiency improving but still lagging Asia - Intra-regional trade limited (protectionist history)



7. Shipping and Connectivity

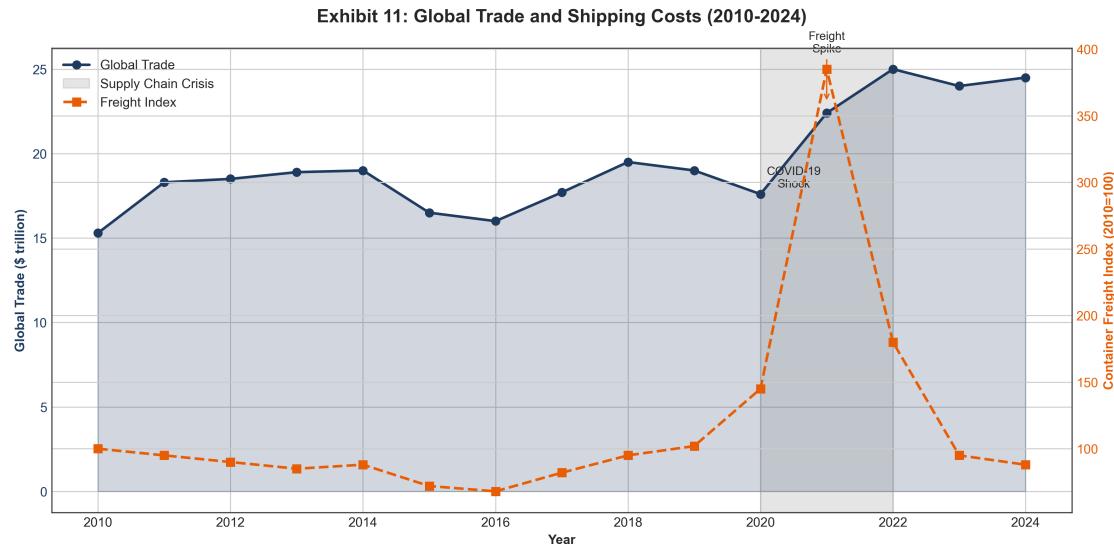
7.1 The Liner Shipping Ecosystem

Container shipping operates on scheduled services connecting port pairs through regular sailings. The Liner Shipping Connectivity Index (LSCI) measures a country's integration into global shipping networks based on:

- Number of companies operating ships
- Total container-carrying capacity
- Number of services
- Maximum vessel size deployed
- Direct connections to other countries

Exhibit 4 shows the evolution of shipping connectivity from 2010-2023, highlighting rapid gains in Vietnam and China versus modest improvements in less-connected markets.

7.2 Container Shipping Market Dynamics


The 2020-2022 period saw unprecedented container shipping market volatility:

2020 (H1): COVID-19 demand collapse; blank sailings, rate decline

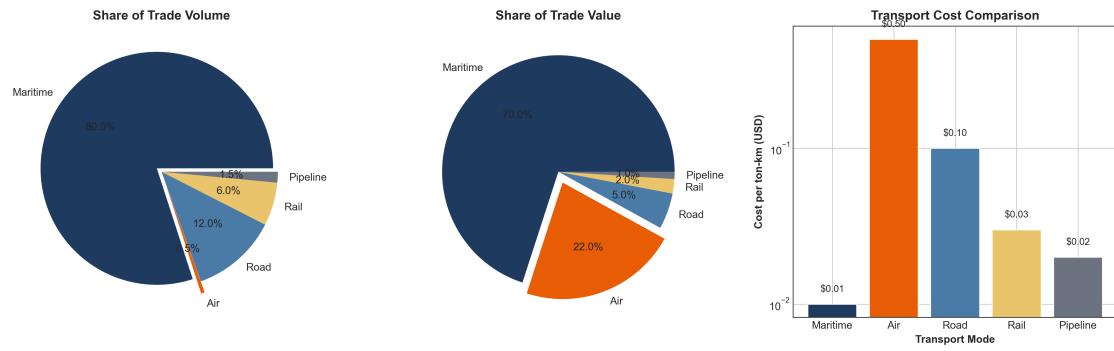
2020 (H2)-2021: Demand surge; port congestion; rate spike (5× pre-COVID levels)

2022: Record carrier profits (\$150+ billion industry-wide); persistent congestion

2023-2024: Normalization; rate decline; overcapacity concerns

Exhibit 11 shows global trade volumes and shipping cost indices from 2010-2024, highlighting the COVID-era disruption and subsequent normalization.

7.3 Shipping Alliances and Market Structure


Three alliances dominate container shipping:

Alliance	Members	Market Share
2M	Maersk, MSC	~35%
Ocean Alliance	CMA CGM, COSCO, Evergreen, OOCL	~30%
THE Alliance	Hapag-Lloyd, ONE, Yang Ming, HMM	~20%

Concentration implications: - Service rationalization on low-volume routes - Bargaining power with ports and shippers - Investment capacity for megaships - Antitrust scrutiny (FMC, EU Commission)

7.4 Modal Alternatives

Exhibit 10: International Trade by Transport Mode

Source: UNCTAD Review of Maritime Transport 2023; World Bank Transport Papers

Exhibit 10 illustrates the modal split in international trade, showing maritime dominance by volume and the disproportionate air share by value.

Air freight: 0.5% of volume but 22% of value. Critical for:

- Time-sensitive products (fashion, electronics)
- High-value/low-weight goods (pharma, gems, electronics components)
- Perishables (cut flowers, fresh produce, seafood)

Rail (international): Growing role for Asia-Europe (China-EU rail: 1+ million TEUs/year). Faster than sea (14-18 days vs. 30-35) but 2x the cost.

Road (international): Dominant for intra-regional trade where distances permit.

8. Case Studies

8.1 Singapore: Logistics Excellence

Singapore consistently ranks #1 on the LPI (4.3 in 2023), demonstrating that geographic scale does not constrain logistics excellence.

Key success factors:

1. **Strategic location:** Natural hub position on Asia-Europe trade lanes
2. **Port excellence:** PSA terminals achieve 40+ moves/hour; minimal dwell times
3. **Trade facilitation:** TradeNet single window since 1989; 99% automated clearance
4. **Institutional quality:** Corruption Perceptions Index rank #4 globally
5. **Investment:** Continuous infrastructure upgrading (Tuas mega-port under construction)

Lessons: - Excellence requires sustained commitment over decades - Institutional framework matters as much as infrastructure - Scale can be compensated by efficiency

8.2 Rwanda: Landlocked Success

Rwanda, a landlocked country with challenging geography, improved its LPI from 2.04 (2010) to 2.95 (2023)—one of the largest gains globally.

Key reforms:

1. **Electronic single window (2012):** Reduced import clearance from 29 days to 3.5 days
2. **One-stop border posts:** Integrated procedures with Uganda, Tanzania
3. **Truck turnaround improvements:** From 3 days to 6 hours at key crossings
4. **Private sector engagement:** Rwanda Freight Forwarders Association advocacy

Results: - Trading Across Borders rank improved from 168 to 88 (2010-2020) - Export processing time reduced 70% - Trade volumes doubled over 10 years

Lessons: - Landlocked status is not deterministic - Soft infrastructure (procedures, institutions) can compensate for geographic disadvantage - Regional cooperation essential for transit countries

8.3 Vietnam: Manufacturing-Driven Transformation

Vietnam's logistics improvement paralleled its emergence as a manufacturing hub:

2010: LPI 2.96, LSCI 32.5 2023: LPI 3.27, LSCI 72.8

Key drivers:

1. **Manufacturing FDI:** Samsung, Intel, Nike, others driving logistics demand
2. **Port investment:** Cai Mep-Thi Vai deep-water port complex
3. **Customs modernization:** ASEAN Single Window integration; risk management
4. **Industrial zone development:** Integrated logistics-manufacturing clusters

Results: - Export growth from \$72B (2010) to \$336B (2023) - Container throughput growth from 5.7M to 25M TEUs - Air cargo growth from 500K to 1.4M tons

Lessons: - Manufacturing demand drives logistics investment - GVC integration requires logistics competence - Sustained improvement requires multi-decade commitment

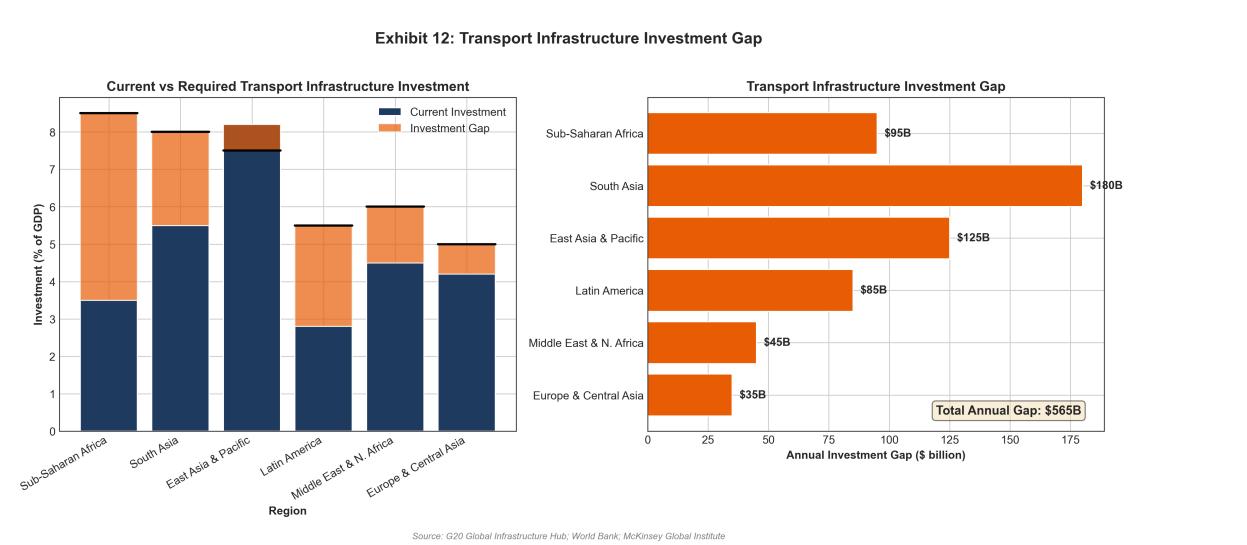
8.4 Morocco: Gateway Strategy

Morocco positioned itself as a gateway between Europe and Africa:

Key investments:

1. **Tanger Med Port:** Largest in Africa/Mediterranean; 8M+ TEU capacity
2. **Industrial zones:** Renault, PSA automotive plants near Tanger Med
3. **Trade agreements:** FTAs with EU, US, enabling duty-free access
4. **Connectivity:** Direct shipping services to 186 ports worldwide

Results: - LSCI grew from 42.8 (2010) to 72.5 (2023) - Automotive exports: \$0 (2005) to \$13B (2023) - Transshipment hub for West Africa


Lessons: - Strategic port investment can transform trade position - Gateway strategy requires competitive manufacturing base - Geographic positioning can be leveraged with right infrastructure

9. Investment and Financing

9.1 The Infrastructure Gap

Transport infrastructure investment in developing economies falls substantially short of requirements:

Exhibit 12 quantifies the transport infrastructure investment gap by region, showing that SSA and South Asia face the largest absolute and relative shortfalls.

Region	Current Investment (% GDP)	Required (% GDP)	Gap (\$ bn/year)
Sub-Saharan Africa	3.5%	8.5%	\$95
South Asia	5.5%	8.0%	\$180
East Asia & Pacific	8.2%	7.5%	(\$125) surplus
Latin America	2.8%	5.5%	\$85
Middle East & N. Africa	4.5%	6.0%	\$45

Region	Current Investment (% GDP)	Required (% GDP)	Gap (\$ bn/year)
Europe & Central Asia	4.2%	5.0%	\$35
Total			\$565

Source: *G20 Global Infrastructure Hub; McKinsey Global Institute; World Bank*

The \$565 billion annual gap reflects: - Deferred maintenance accumulation - Capacity constraints from trade growth - Climate adaptation requirements - Urbanization pressures

9.2 Financing Mechanisms

Public financing: - National budgets: Constrained by fiscal space - Development finance: MDBs, bilateral agencies - Climate funds: GCF, CIF for resilient infrastructure

Private financing: - Project finance: PPPs for ports, toll roads - Corporate investment: Shipping lines, terminal operators - Institutional investors: Infrastructure funds, pension funds

Blended finance: - Guarantees: MIGA, GuarantCo de-risking - First-loss tranches: DFIs absorbing junior risk - Results-based financing: Payment on performance

9.3 Port and Terminal Investment

Port investment offers attractive risk-return profiles where: - Traffic volumes are growing - Regulatory frameworks are stable - Concession terms are transparent - Revenue streams are predictable

Global port operators (DP World, PSA, APM Terminals, Hutchison) have expanded across developing markets, bringing capital and expertise.

Typical port concession structures: - Term: 20–30 years - Revenue share: 3–8% of gross revenues to landlord - Capital commitment: \$100M–\$1B depending on scope - Return expectations: 10–15% IRR (USD)

9.4 Corridor Development Financing

Corridor investments face collective action challenges: - Benefits dispersed across multiple countries/actors - Coordination costs for multi-country projects - Political economy of benefit distribution

Successful approaches: - **Corridor authorities:** Coordinated management (e.g., Walvis Bay Corridor Group) - **Regional development banks:** AfDB, ADB, IDB catalytic roles - **Belt and Road Initiative:** Chinese financing (with sustainability concerns) - **Compact-based approaches:** MCC, EU corridors with reform conditionality

10. Policy Recommendations

10.1 For National Governments

Immediate Actions (0-12 months)

Action	Expected Impact	Investment
Single window implementation	-30-40% clearance time	\$5-20M
Risk-based customs profiling	-25% inspection rate	\$2-5M
Authorized operator program	-50% compliance for trusted traders	\$1-2M
24/7 port/customs operations	+30% throughput capacity	Minimal
Checkpoint reduction	-20% transit time	Political capital

Medium-term Reforms (1-3 years)

Reform	Expected Impact	Investment
Port concession/PPP	2-3x productivity gain	Private capital
Customs modernization	WTO TFA compliance	\$20-50M
One-stop border posts	-60% border crossing time	\$5-15M per OSBP
Transit guarantee systems	-80% bond requirements	Insurance market development
Competition policy (trucking)	-15-25% transport prices	Regulatory reform

Long-term Investments (3-10 years)

Investment	Expected Impact	Indicative Cost
Port expansion/deepening	+100-200% capacity	\$500M-\$2B
Rail freight corridors	-40-60% inland transport cost	\$1-10B
Road network expansion	+20-40% network density	\$2-5M/km
Intermodal terminals	+25% modal efficiency	\$50-200M per terminal

10.2 For Regional Organizations

Trade Facilitation: - Harmonize customs codes and procedures - Mutual recognition of AEO programs - Regional transit guarantee schemes - Integrated border management frameworks

Infrastructure Coordination: - Corridor development prioritization - Missing link financing - Common standards (vehicle dimensions, rail gauge) - Regional investment frameworks

Data and Monitoring: - Regional trade logistics observatories - Corridor performance monitoring - Benchmarking and best practice sharing

10.3 For Private Sector

Exporters: - Participate in AEO programs - Invest in supply chain visibility technologies - Engage in public-private dialogue on logistics constraints - Consider logistics in site selection decisions

Logistics Providers: - Invest in technology and efficiency - Develop integrated service offerings - Partner with international operators for knowledge transfer - Advocate for policy reforms

Investors: - Evaluate port and terminal opportunities - Consider logistics real estate (warehousing, dry ports) - Assess trade finance and fintech opportunities - Factor logistics quality into country risk assessments

10.4 For Development Partners

Financing: - Scale infrastructure lending - Develop blended finance vehicles - Support guarantee instruments - Fund trade facilitation technical assistance

Technical Assistance: - Customs modernization support - Single window implementation - Corridor diagnostic studies - Regulatory reform advisory

Coordination: - Avoid fragmentation across corridors - Align with national priorities - Support regional institutions - Monitor results and adapt

11. Methodology and Data Sources

11.1 Data Sources

This report draws on the following primary data sources:

World Bank Logistics Performance Index (LPI): Biennial survey of logistics professionals rating countries on customs, infrastructure, international shipments, logistics quality, tracking/tracing, and timeliness.

URL: <https://lpi.worldbank.org>

UNCTAD Liner Shipping Connectivity Index (LSCI): Quarterly index measuring container shipping connectivity based on vessels, services, capacity, and connections.

URL: <https://unctadstat.unctad.org>

World Bank-UNESCAP Trade Cost Database: Bilateral trade costs computed from trade and production data using a gravity model approach.

URL: <https://www.unescap.org/resources/escap-world-bank-trade-cost-database>

WTO Trade Facilitation Agreement Database: Country notifications of TFA implementation commitments and progress.

URL: <https://tfadatabase.org>

World Bank Enterprise Surveys: Firm-level surveys covering 140+ countries, including infrastructure modules on transport and logistics constraints.

URL: <https://www.enterprisesurveys.org>

UNCTAD Review of Maritime Transport: Annual publication covering shipping market trends, port performance, and maritime connectivity.

URL: <https://unctad.org/rmt>

11.2 Analytical Methods

Cross-country analysis: Correlation and regression analysis relating logistics indicators to trade outcomes, controlling for income, geography, and institutional factors.

Corridor case studies: In-depth analysis of specific trade corridors combining quantitative data with qualitative assessments of constraints and interventions.

Trade cost decomposition: Structural estimation of trade cost components using gravity model frameworks.

Literature synthesis: Review of academic literature on trade facilitation, transport economics, and logistics management.

11.3 Limitations

Data currency: LPI data is biennial; some country data may be 2-3 years old.

Perception-based measures: LPI relies on logistics professional perceptions, which may differ from objective performance.

Country coverage: Some frontier markets lack comprehensive data.

Causality: Cross-country correlations do not establish causation; we rely on literature with stronger identification for causal claims.

References

Official Publications

World Bank (2023). *Logistics Performance Index 2023*. Washington, DC.

UNCTAD (2023). *Review of Maritime Transport 2023*. Geneva.

World Trade Organization (2024). *Trade Facilitation Agreement Database*. Geneva.

World Bank (2023). *Trading Across Borders Methodology*. Washington, DC.

G20 Global Infrastructure Hub (2023). *Infrastructure Outlook 2023*. Sydney.

African Development Bank (2023). *Africa Infrastructure Development Index*. Abidjan.

Asian Development Bank (2023). *Meeting Asia's Infrastructure Needs*. Manila.

Academic Literature

Arvis, J.-F., et al. (2016). "Trade Costs in the Developing World: 1996-2010." *World Trade Review* 15(3).

Djankov, S., Freund, C., & Pham, C. S. (2010). "Trading on Time." *Review of Economics and Statistics* 92(1).

Hummels, D., & Schaur, G. (2013). "Time as a Trade Barrier." *American Economic Review* 103(7).

Limão, N., & Venables, A. J. (2001). "Infrastructure, Geographical Disadvantage, Transport Costs, and Trade." *World Bank Economic Review* 15(3).

Portugal-Perez, A., & Wilson, J. S. (2012). "Export Performance and Trade Facilitation Reform." *World Bank Economic Review* 26(2).

Industry Reports

Drewry Maritime Research (2024). *Container Port Performance*. London.

McKinsey Global Institute (2022). *Bridging Infrastructure Gaps*. New York.

TradeMark Africa (2023). *East African Corridor Studies*. Nairobi.

Armstrong & Associates (2024). *Global Logistics Expenditure*. Milwaukee.

Appendix

A.1 Glossary of Terms

Term	Definition
AVE	Ad Valorem Equivalent: trade costs expressed as percentage of goods value
ASYCUDA	Automated System for Customs Data: UNCTAD customs management software
LSCI	Liner Shipping Connectivity Index: UNCTAD measure of shipping integration
LPI	Logistics Performance Index: World Bank measure of logistics quality
NTM	Non-Tariff Measure: trade barriers other than tariffs
OSBP	One-Stop Border Post: integrated border facility for both countries
TEU	Twenty-foot Equivalent Unit: standard container measure
TFA	Trade Facilitation Agreement: WTO agreement on customs and procedures
T&D	Transmission and Distribution

A.2 LPI Component Scores (2023)

Country	Customs	Infrastructure	Shipment	Quality	Tracking	Timeliness	Overall
Singapore	4.1	4.5	4.1	4.3	4.2	4.5	4.3
Germany	4.0	4.3	3.9	4.3	4.2	4.4	4.1
Netherlands	4.0	4.3	4.0	4.2	4.1	4.3	4.1
China	3.5	3.8	3.6	3.8	3.8	4.0	3.7
India	3.1	3.3	3.3	3.5	3.5	3.8	3.4
Vietnam	3.0	3.2	3.2	3.4	3.4	3.7	3.3
Nigeria	2.2	2.5	2.5	2.6	2.6	3.0	2.6

Source: World Bank LPI 2023

A.3 Key Corridor Data

Corridor	Length	Cost/TEU	Days	Reliability	Key Constraints
Northern Corridor	1,900 km	\$3,200	12	65%	Weighbridges, Busia
Central Corridor	1,300 km	\$4,500	18	55%	Dar port, road quality
Maputo Corridor	600 km	\$1,200	3	85%	(benchmark)
LAPSSET	1,700 km	\$5,000	15	45%	Construction ongoing
Trans-Saharan	4,500 km	\$8,500	25	35%	Security, road gaps

Source: *TradeMark Africa; UNECA; World Bank*

Document Information

Field	Value
Report Title	Logistics, Trade Costs, and Export Competitiveness
Subtitle	How Ports, Inland Transport, and Trade Frictions Shape Export Performance
Publication Date	January 2025
Publisher	MarketResearch.com
Classification	Market Research Report
Total Exhibits	14
Page Count	~40 pages
